Photocatalysis in Water-Soluble Supramolecular Metal Organic Complex

Author:

Hong Dongfeng1,Shi Linlin2,Liu Xianghui1,Ya Huiyuan1,Han Xin2

Affiliation:

1. College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang 471934, China

2. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

As an emerging subset of organic complexes, metal complexes have garnered considerable attention owing to their outstanding structures, properties, and applications. In this content, metal-organic cages (MOCs) with defined shapes and sizes provide internal spaces to isolate water for guest molecules, which can be selectively captured, isolated, and released to achieve control over chemical reactions. Complex supramolecules are constructed by simulating the self-assembly behavior of the molecules or structures in nature. For this purpose, massive amounts of cavity-containing supramolecules, such as metal-organic cages (MOCs), have been extensively explored for a large variety of reactions with a high degree of reactivity and selectivity. Because sunlight and water are necessary for the process of photosynthesis, water-soluble metal-organic cages (WSMOCs) are ideal platforms for photo-responsive stimulation and photo-mediated transformation by simulating photosynthesis due to their defined sizes, shapes, and high modularization of metal centers and ligands. Therefore, the design and synthesis of WSMOCs with uncommon geometries embedded with functional building units is of immense importance for artificial photo-responsive stimulation and photo-mediated transformation. In this review, we introduce the general synthetic strategies of WSMOCs and their applications in this sparking field.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3