Rational Design of Monolithic g-C3N4 with Floating Network Porous-like Sponge Monolithic Structure for Boosting Photocatalytic Degradation of Tetracycline under Simulated and Natural Sunlight Illumination

Author:

Cao Delu1,Wang Xueying1,Zhang Hefan1,Yang Daiqiong1,Yin Ze1,Liu Zhuo1,Lu Changyu1,Guo Feng2

Affiliation:

1. School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China

2. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

In order to solve the problems of powder g-C3N4 catalysts being difficult to recycle and prone to secondary pollution, floating network porous-like sponge monolithic structure g-C3N4 (FSCN) was prepared with a one-step thermal condensation method using melamine sponge, urea, and melamine as raw materials. The phase composition, morphology, size, and chemical elements of the FSCN were studied using XRD, SEM, XPS, and UV–visible spectrophotometry. Under simulated sunlight, the removal rate for 40 mg·L−1 tetracycline (TC) by FSCN reached 76%, which was 1.2 times that of powder g-C3N4. Under natural sunlight illumination, the TC removal rate of FSCN was 70.4%, which was only 5.6% lower than that of a xenon lamp. In addition, after three repeated uses, the removal rates of the FSCN and powder g-C3N4 samples decreased by 1.7% and 2.9%, respectively, indicating that FSCN had better stability and reusability. The excellent photocatalytic activity of FSCN benefits from its three-dimensional-network sponge-like structure and outstanding light absorption properties. Finally, a possible degradation mechanism for the FSCN photocatalyst was proposed. This photocatalyst can be used as a floating catalyst for the treatment of antibiotics and other types of water pollution, providing ideas for the photocatalytic degradation of pollutants in practical applications.

Funder

National Natural Science Foundation of China

Hebei Province 333 Talents Project

Science and Technology Project of Hebei Education Department

Graduate Student Innovation Ability Training Funding Project of Hebei Province

Open Fund for Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse

Hebei Geo University Student Science and Technology Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3