High-Efficiency Purification and Morphology Regulation of CaSO4·2H2O Crystals from Phosphogypsum

Author:

Lei Yang1,Gong Yong-Ji1,He Min1ORCID,Li Liangqun2,Qin Jun3,Liu Yufei14ORCID

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

2. Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China

3. Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China

4. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China

Abstract

Phosphogypsum is a solid waste with great environmental stockpile pressure produced by the wet production of phosphoric acid. Although there are various methods to purify and utilize phosphogypsum, the means for environmentally friendly, low energy consumption, and high value-added utilization still need to be further explored. Here, CaSO4·2H2O crystal was directly purified and regulated from phosphogypsum by using the anti-solvent method. The antisolvent can be adsorbed in the c-axis direction of the crystal and further inhibit the growth rate in this direction, resulting in a change in the morphology of the crystal. By adjusting the polarity and chain length of the anti-solvent, the morphology of CaSO4·2H2O crystal can change from butterfly-like flake crystals to hexagonal prism-like crystals. When n-propanol with long chain was used as the anti-solvent, the morphology of the CaSO4·2H2O crystal showed a hexagonal prism with a specific surface area of 19.98 m2/g and a Cu2+ loading efficiency of 52.67%. The encouraging results open up new possibilities for the application of phosphogypsum.

Funder

Guiyang City Science and Technology Plan Project

Guizhou Provincial Science and Technology Program Guizhou Science and Platform Talents

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3