One-Pot Synthesis of Semiconducting Quantum Dots–Organic Linker–Carbon Nanotubes for Potential Applications in Bulk Heterojunction Solar Cells

Author:

Dasari Mallika1,Muchharla Baleeswaraiah2ORCID,Talapatra Saikat2,Kohli Punit1

Affiliation:

1. School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA

2. School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA

Abstract

Materials and composites with the ability to convert light into electricity are essential for a variety of applications, including solar cells. The development of materials and processes needed to boost the conversion efficiency of solar cell materials will play a key role in providing pathways for dependable light to electric energy conversion. Here, we show a simple, single-step technique to synthesize photoactive nanocomposites by coupling carbon nanotubes with semiconducting quantum dots using a molecular linker. We also discuss and demonstrate the potential application of nanocomposite for the fabrication of bulk heterojunction solar cells. Cadmium selenide (CdSe) quantum dots (QDs) were attached to multiwall carbon nanotubes (MWCNTs) using perylene-3, 4, 9, 10-tetracarboxylic-3, 4, 9, 10-dianhydride (PTCDA) as a molecular linker through a one-step synthetic route. Our investigations revealed that PTCDA tremendously boosts the density of QDs on MWCNT surfaces and leads to several interesting optical and electrical properties. Furthermore, the QD–PTCDA–MWCNTs nanocomposites displayed a semiconducting behavior, in sharp contrast to the metallic behavior of the MWCNTs. These studies indicate that, PTCDA interfaced between QDs and MWCNTs, acted as a molecular bridge which may facilitate the charge transfer between QDs and MWCNTs. We believe that the investigations presented here are important to discover simple synthetic routes for obtaining photoactive nanocomposites with several potential applications in the field of opto-electronics as well as energy conversion devices.

Funder

NSF

OVCR

IMAGE center

Advanced Energy Institute

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference60 articles.

1. Semiconductor Clusters, Nanocrystals, and Quantum Dots;Alivisatos;Science,1996

2. Colloidal Quantum Dot Solar Cells;Carey;Chem. Rev.,2015

3. Quantum dots versus organic dyes as fluorescent labels;Grabolle;Nat. Methods,2008

4. Optical properties of CdSe quantum dots;Troparevsky;J. Chem. Phys.,2003

5. InGaN-CdSe-ZnSe quantum dots white LEDs;IEEE Photon. Technol. Lett.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3