Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity

Author:

Bajcar Marcin,Saletnik BogdanORCID,Zaguła Grzegorz,Puchalski Czesław

Abstract

This article presents the findings of a study investigating the explosion and combustion parameters of dust from the raw biomass of wheat straw and energy willow and from the products of biomass torrefaction generated at temperatures ranging from 220 to 300 °C. Agricultural waste and energy crops and their modifications, e.g., in the torrefaction process, did not find a place in explosive risk research, which the authors decided to present in their work. The study was designed to estimate explosion hazard during the processing of the materials into fuels and during the storage process. The measurements recorded a maximum explosion pressure Pmax in the case of dust from biomass ranging from 7.2 to 7.3 bar and for dust from torrefied materials amounting to 7.5–9.2 bar, and a maximum rate of pressure rise over time (dp/dt)max in raw biomass ranging from 201.4 to 261.3 bar/s and in torrefied materials amounting to 209.6–296.6 bar/s. The estimated explosion index Kstmax for raw biomass was 55–72 m*bar/s and for torrefied materials was in the range from 57 to 81 m*bar/s. In the results, the authors present values for specific types of fuel which differ significantly depending on the type of biomass. The research findings show that the torrefaction process used in fuel production is not associated with a significantly greater risk of explosion and the materials obtained may safely be used as an alternative to conventional solid fuels. Given the growing interest in the use of biomass and in the variety of biomass processing methods for energy-related purposes, it seems there is a need for research to develop appropriate guidelines and for effective practices to be introduced in the energy industry in order to ensure the safety of the processes used in the production of novel fuels especially in small installations converting these materials into more efficient energy material.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3