Corrosion Inhibition in CO2-Saturated Brine by Nd3+ Ions

Author:

Canto Jorge1,Rodríguez-Díaz Roberto Ademar2,Martinez-de-la-Escalera Lorenzo Martinez1,Neri Adrian1ORCID,Porcayo-Calderon Jesus3

Affiliation:

1. Corrosion y Proteccion (CyP), Buffon 46, Mexico City 11590, Mexico

2. Department of Materials Engineering, Technological of Superiors Studies of Coacalco, Av. 16 de Septiembre 54, Cabecera Municipal, Coacalco 55700, Mexico

3. Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico

Abstract

This study reports the use of an inorganic corrosion inhibitor to mitigate dissolved CO2-induced corrosion. Using electrochemical techniques (polarization curves, open circuit potential, polarization resistance, and electrochemical impedance), the effect of adding Nd3+ ions on the corrosion resistance of X52 steel immersed in CO2-saturated brine at 20 °C and 60 °C was evaluated. The polarization curves showed that the Icorr values tend to decrease with increasing Nd3+ ion concentration, up to the optimal inhibition concentration, and that the corrosion potential increases at nobler values. Open circuit potential measurements showed a large increase in potential values immediately after the addition of the Nd3+ ions. Similarly, polarization resistance measurements showed similar trends. It was observed that regardless of temperature, Nd3+ ions can reduce the corrosion rate by more than 97% at doses as low as 0.001 M. Electrochemical impedance measurements confirmed the formation of a protective layer on the steel surface, which caused an increase in the magnitude of the impedance module and phase angle, which indicates an increase in the resistance to charge transfer and capacitive properties of the metallic surface. The characterization of the metallic surface showed that the protective layer was formed by Nd carbonates, whose formation was due to a CO2 capture process.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3