Oral Bioactive Self-Nanoemulsifying Drug Delivery Systems of Remdesivir and Baricitinib: A Paradigmatic Case of Drug Repositioning for Cancer Management

Author:

Kazi Mohsin1ORCID,Alanazi Yousef1,Kumar Ashok2,Shahba Ahmad Abdul-Wahhab13ORCID,Rizwan Ahamad Syed4,Alghamdi Khalid M.25

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

2. Vitiligo Research Chair, Department of Dermatology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia

3. Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

5. Department of Dermatology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Oral anticancer therapy mostly faces the challenges of low aqueous solubility, poor and irregular absorption from the gastrointestinal tract, food-influenced absorption, high first-pass metabolism, non-targeted delivery, and severe systemic and local adverse effects. Interest has been growing in bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDSs) using lipid-based excipients within nanomedicine. This study aimed to develop novel bio-SNEDDS to deliver antiviral remdesivir and baricitinib for the treatment of breast and lung cancers. Pure natural oils used in bio-SNEDDS were analyzed using GC-MS to examine bioactive constituents. The initial evaluation of bio-SNEDDSs were performed based on self-emulsification assessment, particle size analysis, zeta potential, viscosity measurement, and transmission electron microscopy (TEM). The single and combined anticancer effects of remdesivir and baricitinib in different bio-SNEDDS formulations were investigated in MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. The results from the GC-MS analysis of bioactive oils BSO and FSO showed pharmacologically active constituents, such as thymoquinone, isoborneol, paeonol and p-cymenene, and squalene, respectively. The representative F5 bio-SNEDDSs showed relatively uniform, nanosized (247 nm) droplet along with acceptable zeta potential values (+29 mV). The viscosity of the F5 bio-SNEDDS was recorded within 0.69 Cp. The TEM suggested uniform spherical droplets upon aqueous dispersions. Drug-free, remdesivir and baricitinib-loaded bio-SNEDDSs (combined) showed superior anticancer effects with IC50 value that ranged from 1.9–4.2 µg/mL (for breast cancer), 2.4–5.8 µg/mL (for lung cancer), and 3.05–5.44 µg/mL (human fibroblasts cell line). In conclusion, the representative F5 bio-SNEDDS could be a promising candidate for improving the anticancer effect of remdesivir and baricitinib along with their existing antiviral performance in combined dosage form.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3