Application and Research Status of Long-Wavelength Fluorescent Carbon Dots

Author:

Cheng Yujia1,Yu Guang1

Affiliation:

1. Mechanical and Electrical Engineering Institute, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China

Abstract

This article discusses the application and research status of long-wavelength fluorescent carbon dots. Currently, there are two main methods for synthesising carbon dots (CDs), either from top to bottom, according to the bulk material, or from bottom to top, according to the small molecules. In previous research, mainly graphite and carbon fibres were used as raw materials with which to prepare CDs, using methods such as arc discharge, laser corrosion, and electrochemistry. These preparation methods have low quantum efficiencies and afford CDs that are limited to blue short-wavelength light emissions. With advancing research, the raw materials used for CD preparation have expanded from graphite to biomaterials, such as strawberry, lime juice, and silkworm chrysalis, and carbon-based molecules, such as citric acid, urea, and ethylenediamine (EDA). The preparation of CDs using carbon-based materials is more rapid and convenient because it involves the use of microwaves, ultrasonication, and hydrothermal techniques. Research on developing methods through which to prepare CDs has made great progress. The current research in this regard is focused on the synthesis of CDs, including long-wavelength fluorescent CDs, with a broader range of applications.

Funder

Colleges Feature Innovation Project of Guangdong Province, China

Science and Technology Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3