Novel Tryptanthrin Derivatives with Selectivity as c–Jun N–Terminal Kinase (JNK) 3 Inhibitors

Author:

Schepetkin Igor A.1,Karpenko Oleksander S.2,Kovrizhina Anastasia R.3ORCID,Kirpotina Liliya N.1,Khlebnikov Andrei I.3ORCID,Chekal Stepan I.4,Radudik Alevtyna V.24,Shybinska Maryna O.2,Quinn Mark T.1ORCID

Affiliation:

1. Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA

2. O.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odesa, Ukraine

3. Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia

4. Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 65082 Odesa, Ukraine

Abstract

The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.

Funder

National Institutes of Health IDeA Program

USDA National Institute of Food and Agriculture Hatch

Montana State University Agricultural Experiment Station

Ministry of Science and Higher Education of the Russian Federation

Tomsk Polytechnic University Development Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3