Small Dimension—Big Impact! Nanoparticle-Enhanced Non-Invasive and Intravascular Molecular Imaging of Atherosclerosis In Vivo

Author:

Lenz Tobias,Nicol Philipp,Castellanos Maria Isabel,Engel Leif-Christopher,Lahmann Anna Lena,Alexiou Christoph,Joner Michael

Abstract

Extensive translational research has provided considerable progress regarding the understanding of atherosclerosis pathophysiology over the last decades. In contrast, implementation of molecular in vivo imaging remains highly limited. In that context, nanoparticles represent a useful tool. Their variable shape and composition assure biocompatibility and stability within the environment of intended use, while the possibility of conjugating different ligands as well as contrast dyes enable targeting of moieties of interest on a molecular level and visualization throughout various imaging modalities. These characteristics have been exploited by a number of preclinical research approaches aimed at advancing understanding of vascular atherosclerotic disease, in order to improve identification of high-risk lesions prior to oftentimes fatal thromboembolic events. Furthermore, the combination of these targeted nanoparticles with therapeutic agents offers the potential of site-targeted drug delivery with minimized systemic secondary effects. This review gives an overview of different groups of targeted nanoparticles, designed for in vivo molecular imaging of atherosclerosis as well as an outlook on potential combined diagnostic and therapeutic applications.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference65 articles.

1. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013;Naghavi;Lancet,2015

2. Inflammation in atherosclerosis

3. Lessons From Sudden Coronary Death

4. Acute coronary syndromes without coronary plaque rupture

5. Plaque stabilisation by systemic and local drug administration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3