Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide

Author:

Xu Huifang1,Liang Xin1,Lu Song1,Gao Meihua2,Wang Sijia1,Li Yuanyuan1

Affiliation:

1. College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China

2. School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China

Abstract

To disperse fatty acids in aqueous solution, choline, a quaternary ammonium ion, has been used recently. So far, only the self-assembly of myristic acid (MA) in the presence of choline hydroxide as a function of the molar ratio has been investigated, and, thus, the current understanding of these fatty acid systems is still limited. We investigated the self-assembly of palmitic acid (PA) in the presence of choline hydroxide (ChOH) as a function of the molar ratio (R) between ChOH and PA. The self-assemblies were characterized by phase contrast microscopy, cryo-TEM, small-angle X-ray scattering, and 2H NMR. The ionization state of PA was determined by pH, conductivity, and FT-IR measurements. With increase in R, various self-assembled structures, including vesicles, lamellar phase, rigid membranes (large sheets, tubules, cones, and polyhedrals), and micelles, form in the PA/ChOH system, different from those of the MA/ChOH system. The change in R induces pH variation and, consequently, a change in the PA ionization state, which, in turn, regulates the molecular interactions, including hydrogen bonding and electrostatic interaction, leading to various self-assemblies. Temperature is an important factor used to tune the self-assembly transitions. The fatty acid choline systems studied here potentially may be applicable in medicine, chemical engineering, and biotechnology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Key Research Project of Higher Education Institutions in Henan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3