Solanine Inhibits Proliferation and Angiogenesis and Induces Apoptosis through Modulation of EGFR Signaling in KB-ChR-8-5 Multidrug-Resistant Oral Cancer Cells

Author:

Prasad Prathibha12,Jaber Mohamed3ORCID,Alahmadi Tahani Awad4,Almoallim Hesham S.5,Ramu Arun Kumar6

Affiliation:

1. Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates

2. Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India

3. Clinical Dental Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates

4. Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh 11461, Saudi Arabia

5. Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia

6. Department of Biochemistry and Biotechnology, Centre for Research and Development Ponnaiyah Ramajayam Institute of Science and Technology (PRIST Deemed University), Thanjavur 613403, India

Abstract

Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 μM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3