Enhanced Peroxydisulfate (PDS) Activation for Sulfamethoxazole (SMX) Degradation by Modified Sludge Biochar: Focusing on the Role of Functional Groups

Author:

He Yuting1,Lin Jiantao12,Yang Yuchuan12,Liu Minghua123ORCID,Liu Yifan12

Affiliation:

1. Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Fuzhou University, Fuzhou 350108, China

2. College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China

3. College of Environmental and Biological Engineering, Putian University, Putian 351100, China

Abstract

Modified sludge biochar, recognized for its notable economic and environmental benefits, demonstrates potential as an effective catalyst for peroxydisulfate (PDS) activation. Nevertheless, the specific mechanisms underlying its catalytic performance require more comprehensive investigation. In this study, a modified biochar (TSBC) doped with oxygen (O) and nitrogen (N) atoms was synthesized from sewage sludge and tannin extract, which significantly enhanced the activation of PDS for the degradation of sulfamethoxazole (SMX). The TSBC/PDS system demonstrated robust performance for SMX degradation, achieving over 90% efficiency over a wide pH range (3–10). Subsequent quenching experiments demonstrated that TSBC predominantly catalyzed PDS to generate O21, which effectively degraded SMX via a non-radical pathway. The O- and N-containing functional groups in TSBC were identified as the primary catalytic sites. Besides, density functional theory (DFT) calculations revealed that the incorporation of graphitic N significantly improved the adsorption capacity of PDS on the TSBC surface. Furthermore, based on the identification of intermediates and theoretical calculations, SMX was degraded mainly by two different pathways: S-N cleavage and O21 oxidation. This study offers a foundational framework for the targeted modification of sludge biochar, thereby expanding its applications.

Funder

Key Science and Technology Projects in Fujian Province

Science and Technology Project of Innovation Platform in Fuzhou City

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3