Strengthened Decellularized Porcine Valves via Polyvinyl Alcohol as a Template Improving Processability

Author:

Chen Qingqing1,Wang Chaorong1,Wang Han23,Xiao Jinfeng2,Zhou Yingshan1,Gu Shaojin1,Xu Weilin2,Yang Hongjun12ORCID

Affiliation:

1. College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China

2. Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China

3. Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

Abstract

The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing. Mechanical tests show that the strength and elastic modulus of DHVs treated with different concentrations of PVA significantly improve. Without the PVA layer, the valve would shift during suture puncture and not achieve the desired suture result. The in vitro results indicate that decellularized valves treated with PVA can sustain the adhesion and growth of human umbilical vein endothelial cells (HUVECs). All results above show that the DHVs treated with water-soluble PVA have good mechanical properties and cytocompatibility to ensure post-treatment. On this basis, the improved processability of DHV treated with PVA enables a new paradigm for the manufacturing of scaffolds, making it easy to apply.

Funder

Key Research and Development Program of Hubei Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3