Enhancing the Toughness of PAA/LCNF/SA Hydrogel through Double-Network Crosslinking for Strain Sensor Application

Author:

Li Xin1,Gao Hui12ORCID,Wang Qiang12,Liu Shanshan12

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China

2. Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China

Abstract

Lignin-containing nanocellulose fibers (LCNF) have been considered as a valuable enhancer for polyacrylic acid (PAA)-based hydrogels that can form rigid porous network structures and provide abundant polar groups. However, the PAA–LCNF hydrogel is dominated by a single-network (SN) structure, which shows certain limitations when encountering external environments with high loads and large deformations. In this paper, sodium alginate (SA) was introduced into the PAA–LCNF hydrogel network to prepare a double-network (DN) hydrogel structure of the SA-Ca2+ and PAA–LCNF through a two-step process. The covalent network of PAA–LCNF acts as the resilient framework of the hydrogel, while the calcium bridging networks of SA, along with the robust hydrogen bonding network within the system, function as sacrificial bonds that dissipate energy and facilitate stress transfer. The resulting hydrogel has porous morphologies. Results show that SA can effectively improve the mechanical properties of DN hydrogels and endow them with excellent thermal stability and electrical conductivity. Compared with pure PAA–LCNF hydrogel, the elongation at break of DN hydrogel increased from 3466% to 5607%. The good electrical conductivity makes it possible to use the flexible sensors based on DN hydrogel to measure electrophysiological signals. Our results can provide a reference for developing multifunctional hydrogels that can withstand ultra large deformation.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

the Fundamental research projects for integrating science, education, and industry of Qilu University of Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3