Influence of Post-Processing on the Degree of Conversion and Mechanical Properties of 3D-Printed Polyurethane Aligners

Author:

Šimunović Luka1ORCID,Jurela Antonija2,Sudarević Karlo2,Bačić Ivana3ORCID,Haramina Tatjana4,Meštrović Senka1ORCID

Affiliation:

1. Department of Orthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia

2. Dental Clinic Fiziodent, 10000 Zagreb, Croatia

3. Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia

4. Department of Materials, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Background: This study explores how different post-processing methods affect the mechanical properties and degree of conversion of 3d-printed polyurethane aligners made from Tera Harz TC-85 resin. Methods: Using Fourier-transform infrared (FTIR) spectroscopy, the degree of conversion of liquid resin and post-processed materials was analyzed. This investigation focused on the effects of various post-curing environments (nitrogen vs. air) and rinsing protocols (centrifuge, ethanol, isopropanol, and isopropanol + water). The assessed mechanical properties were flexural modulus and hardness. Results: The degree of conversion showed no significant variance across different groups, though the polymerization environment influenced the results, accounting for 24.0% of the variance. The flexural modulus varied considerably, depending on both the rinsing protocol and the polymerization environment. The standard protocol (centrifugation followed by nitrogen polymerization) exhibited the highest flexural modulus of 1881.22 MPa. Hardness testing revealed significant differences, with isopropanol treatments showing increased resistance to wear in comparison to the centrifuge and ethanol rinse treatments. Conclusions: This study conclusively demonstrates the adverse effects of oxygen on the polymerization process, underscoring the critical need for an oxygen-free environment to optimize material properties. Notably, the ethanol rinse followed by nitrogen polymerization protocol emerged as a viable alternative to the conventional centrifuge plus nitrogen method.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3