Structure–Property Relationships for Fluorinated and Fluorine-Free Superhydrophobic Crack-Free Coatings

Author:

Turkoglu Sevil1ORCID,Zhang Jinde1,Dodiuk Hanna2,Kenig Samuel2ORCID,Ratto Ross Jo Ann1,Karande Saurabh Ankush1,Wang Yujie1,Diaz Armas Nathalia1,Auerbach Margaret3,Mead Joey1

Affiliation:

1. Plastics Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854, USA

2. Department of Polymer Materials Engineering, Shenkar College, Ramat Gan 5252626, Israel

3. U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA

Abstract

In this study, particle loading, polyfluorinated alkyl silanes (PFAS or FAS) content, superhydrophobicity, and crack formation for nanocomposite coatings created by the spray coating process were investigated. The formulations comprised hydrophobic silica, epoxy resin, and fluorine-free or FAS constituents. The effect of FAS content and FAS-free compositions on the silica and epoxy coatings’ chemistry, topography, and wetting properties was also studied. All higher particle loadings (~30 wt.%) showed superhydrophobicity, while lower particle loading formulations did not show superhydrophobic behavior until 13% wt. FAS content. The improved water repellency of coatings with increased FAS (low particle loadings) was attributed to a combination of chemistry and topography as described by the Cassie state. X-ray photoelectron spectroscopy (XPS) spectra showed fluorine enrichment on the coating surface, which increases the intrinsic contact angle. However, increasing the wt.% of FAS in the final coating resulted in severe crack formation for higher particle loadings (~30 wt.%). The results show that fluorine-free and crack-free coatings exhibiting superhydrophobicity can be created.

Funder

U.S. Army Combat Capabilities Development Command Soldier Center

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3