Direct Pellet Three-Dimensional Printing of Polybutylene Adipate-co-Terephthalate for a Greener Future

Author:

Karimi Armin12ORCID,Rahmatabadi Davood1ORCID,Baghani Mostafa1ORCID

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran

2. Department of Aerospace Engineering, Sharif University of Technology, Tehran P.O. Box 11155-9567, Iran

Abstract

The widespread use of conventional plastics in various industries has resulted in increased oil consumption and environmental pollution. To address these issues, a combination of plastic recycling and the use of biodegradable plastics is essential. Among biodegradable polymers, poly butylene adipate-co-terephthalate (PBAT) has attracted significant attention due to its favorable mechanical properties and biodegradability. In this study, we investigated the potential of using PBAT for direct pellet printing, eliminating the need for filament conversion. To determine the optimal printing temperature, three sets of tensile specimens were 3D-printed at varying nozzle temperatures, and their mechanical properties and microstructure were analyzed. Additionally, dynamic mechanical thermal analysis (DMTA) was conducted to evaluate the thermal behavior of the printed PBAT. Furthermore, we designed and printed two structures with different infill percentages (40% and 60%) to assess their compressive strength and energy absorption properties. DMTA revealed that PBAT’s glass–rubber transition temperature is approximately −25 °C. Our findings demonstrate that increasing the nozzle temperature enhances the mechanical properties of PBAT. Notably, the highest nozzle temperature of 200 °C yielded remarkable results, with an elongation of 1379% and a tensile strength of 7.5 MPa. Moreover, specimens with a 60% infill density exhibited superior compressive strength (1338 KPa) and energy absorption compared with those with 40% infill density (1306 KPa). The SEM images showed that with an increase in the nozzle temperature, the quality of the print was greatly improved, and it was difficult to find microholes or even a layered structure for the sample printed at 200 °C.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3