Highly Efficient Biosorption of Cationic Dyes via Biopolymeric Adsorbent-Material-Based Pectin Extract Polysaccharide and Carrageenan Grafted to Cellulosic Nonwoven Textile

Author:

EL-Ghoul Yassine12ORCID,Alsamani Salman1

Affiliation:

1. Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia

2. Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia

Abstract

Water scarcity and contamination have emerged as critical global challenges, requiring the development of effective and sustainable solutions for the treatment of contaminated water. Recently, functionalized polymer biomaterials have garnered significant interest because of their potential for a wide range of water treatment applications. Accordingly, this paper highlights the design of a new adsorbent material based on a cellulosic nonwoven textile grafted with two extracted biopolymers. The layer-by-layer grafting technique was used for the polyelectrolyte multi-layer (PEM) biosorbent production. Firstly, we extracted a Suaeda fruticosa polysaccharide (SFP) and confirmed its pectin-like polysaccharide structure via SEC, NMR spectroscopy, and chemical composition analyses. Afterward, the grafting was designed via an alternating multi-deposition of layers of SFP polymer and carrageenan crosslinked with 1,2,3,4-butanetetracarboxylic acid (BTCA). FT-IR and SEM were used to characterize the chemical and morphological characteristics of the designed material. Chemical grafting via polyesterification reactions of the PEM biosorbent was confirmed through FT-IR analysis. SEM revealed the total filling of material microspaces with layers of grafted biopolymers and a rougher surface morphology. The assessment of the swelling behavior revealed a significant increase in the hydrophilicity of the produced adsorbent system, a required property for efficient sorption potential. The evaluation of the adsorption capabilities using the methylene blue (MB) as cationic dye was conducted in various experimental settings, changing factors such as the pH, time, temperature, and initial concentration of dye. For the untreated and grafted materials, the greatest adsorbed amounts of MB were 130.6 mg/g and 802.6 mg/g, respectively (pH = 4, T = 22 C, duration = 120 min, and dye concentration = 600 mg/L). The high adsorption performance, compared to other reported materials, was due to the presence of a large number of hydroxyl, sulfonate, and carboxylic functional groups in the biosorbent polymeric system. The adsorption process fitted well with the pseudo-first-order kinetic model and Langmuir/Temkin adsorption isotherms. This newly developed multi-layered biosorbent shows promise as an excellent adsorption resultant and cheap-cost/easy preparation alternative for treating industrial wastewater.

Funder

Qassim University

Publisher

MDPI AG

Reference83 articles.

1. Water pollution: Effects, prevention, and climatic impact;Water Chall. Urban. World,2018

2. Effects of water pollution on human health and disease heterogeneity: A review;Lin;Front. Environ. Sci.,2022

3. Evaluation of the response to emerging environmental threats, focusing on carbon dioxide (CO2), volatile organic compounds (VOCs), and scrubber wash water (SOx);Boviatsis;Euro-Mediterr. J. Environ. Integr.,2022

4. Redevelopment of urban brownfield sites in China: Motivation, history, policies and improved management;Sun;Eco-Environ. Health,2022

5. Advanced oxidation of raw and biotreated textile industry wastewater with O3, H2O2/UV-C and their sequential application;Arslan;J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3