Evaluation of the Viability of 3D Printing in Recycling Polymers

Author:

Maraveas Chrysanthos1ORCID,Kyrtopoulos Ioannis Vasileios1ORCID,Arvanitis Konstantinos G.1ORCID

Affiliation:

1. Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece

Abstract

The increased use of plastics in industrial and agricultural applications has led to high levels of pollution worldwide and is a significant challenge. To address this plastic pollution, conventional methods such as landfills and incineration are used, leading to further challenges such as the generation of greenhouse gas emissions. Therefore, increasing interest has been directed to identifying alternative methods to dispose of plastic waste from agriculture. The novelty of the current research arose from the lack of critical reviews on how 3-Dimensional (3D) printing was adopted for recycling plastics, its application in the production of agricultural plastics, and its specific benefits, disadvantages, and limitations in recycling plastics. The review paper offers novel insights regarding the application of 3D printing methods including Fused Particle Fabrication (FPF), Hot Melt Extrusion (HME), and Fused Deposition Modelling (FDM) to make filaments from plastics. However, the methods were adopted in local recycling setups where only small quantities of the raw materials were considered. Data was collected using a systematic review involving 39 studies. Findings showed that the application of the 3D printing methods led to the generation of agricultural plastics such as Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PET), and High-Density Polyethylene (HDPE), which were found to have properties comparable to those of virgin plastic, suggesting the viability of 3D printing in managing plastic pollution. However, limitations were also associated with the 3D printing methods; 3D-printed plastics deteriorated rapidly under Ultraviolet (UV) light and are non-biodegradable, posing further risks of plastic pollution. However, UV stabilization helps reduce plastic deterioration, thus increasing longevity and reducing disposal. Future directions emphasize identifying methods to reduce the deterioration of 3D-printed agricultural plastics and increasing their longevity in addition to UV stability.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3