The Development and Performance of Knitted Cool Fabric Based on Ultra-High Molecular Weight Polyethylene

Author:

Zhao Yajie1,Dong Zhijia1,He Haijun1,Cong Honglian1ORCID

Affiliation:

1. Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi 214122, China

Abstract

In order to withstand high-temperature environments, ultra-high molecular weight polyethylene (UHMWPE) fibers with cooling properties are being increasingly used in personal thermal management textiles during the summer. However, there is relatively little research on its combination with knitting. In this paper, we combine UHMWPE fiber and knitting structure to investigate the impact of varying UHMWPE fiber content and different knitting structures on the heat and humidity comfort as well as the cooling properties of fabrics. For this purpose, five kinds of different proportions of UHMWPE and polyamide yarn preparation, as well as five kinds of knitted tissue structures based on woven tissue were designed to weave 25 knitted fabrics. The air permeability, moisture permeability, moisture absorption and humidity conduction, thermal property, and contact cool feeling property of the fabrics were tested. Then, orthogonal analysis and correlation analysis were used to statistically evaluate the properties of the fabrics statistically. The results show that as the UHMWPE content increases, the air permeability, heat conductivity, and contact cool feeling property of the fabrics improve. The moisture permeability, moisture absorption and humidity conductivity of fabrics containing UHMWPE are superior to those containing only polyamide. The air permeability, moisture permeability, and thermal conductivity of the fabrics formed by the tuck plating organization are superior to those of the flat needle plating and float wire plating organization. The fabric formed by 2 separate 2 float wire organization has the best moisture absorption, humidity conduction, contact cool feeling property.

Publisher

MDPI AG

Reference48 articles.

1. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles;Ji;J. Text. Res.,2022

2. Research on the cool-feeling fabrics;Yao;China Fiber Insp.,2019

3. Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort;Bhuiyan;J. Mater. Sci.,2020

4. Fundamentals, materials and strategies for personal thermal management by next-generation textiles;Farooq;Compos. Part A Appl. Sci. Manuf.,2021

5. Cooling textiles for personal thermal management;Zeng;Chin. Sci. Bull.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3