The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder

Author:

Szeptyński Paweł1,Pochopień Jan Grzegorz1ORCID,Jasińska Dorota1,Kwiecień Arkadiusz1ORCID

Affiliation:

1. Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland

Abstract

This study addresses the challenges of modeling flexible connections in composite structures employing a polymeric adhesive layer. These types of connections provide a more uniform stress distribution compared to conventional rigid connectors. However, they lack standardized design rules and still require much research to sufficiently comprehend their properties. The novelty of this research lies in proposing an analytical solution to address these issues. Its aim is to investigate the influence of the stiffness of the polymer adhesive on the girder’s deflection and on the maximum stresses in both the adhesive and concrete. The analyzed composite structure consists of a reinforced concrete (RC) slab and an RC beam connected with a layer of flexible polyurethane (FPU) adhesive. Analytical and numerical approaches for the description of the mechanical response of a composite bridge girder are presented. Another objective is to validate the analytical design formulas using 3D nonlinear numerical analysis, both in the case of uncracked and cracked concrete. Seven types of FPUs are tested in the uniaxial tension test, each examined at five strain rates. The obtained data is used to predict the mechanical response of the considered girder using finite element analysis (FEA) as well as with a simplified one-dimensional composite beam theory. Fair agreement is found between the FEA results and theoretical predictions. A comparison of the results obtained for these two models is performed, and the similarities and discrepancies are highlighted and discussed.

Funder

Ministry of Education and Science of the Republic of Poland

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3