Catalyst-Free Amino-Yne Click Reaction: An Efficient Way for Immobilizing Amoxicillin onto Polymeric Surfaces

Author:

Sánchez-Bodón Julia1ORCID,Diaz-Galbarriatu Maria1,Sola-Llano Rebeca2ORCID,Ruiz-Rubio Leire13ORCID,Vilas-Vilela José Luis13,Moreno-Benitez Isabel4ORCID

Affiliation:

1. Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain

2. Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain

3. BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Science Park, 48940 Leioa, Spain

4. Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain

Abstract

Surface modifications play a crucial role in enhancing the functionality of biomaterials. Different approaches can be followed in order to achieve the bioconjugation of drugs and biological compounds onto polymer surfaces. In this study, we focused on the immobilization of an amoxicillin antibiotic onto the surface of poly-L-lactic acid (PLLA) using a copper-free amino-yne click reaction. The utilization of this reaction allowed for a selective and efficient bioconjugation of the amoxicillin moiety onto the PLLA surface, avoiding copper-related concerns and ensuring biocompatibility. The process involved sequential steps that included surface activation via alkaline hydrolysis followed by an amidation reaction with ethylendiamine, functionalization with propiolic groups, and subsequent conjugation with amoxicillin via a click chemistry approach. Previous amoxicillin immobilization using tryptophan and fluorescent amino acid conjugation was carried out in order to determine the efficacy of the proposed methodology. Characterization techniques such as X-ray photoelectron spectroscopy (XPS), Attenuated Total Reflection (ATR)–Fourier Transform Infrared (FTIR) spectroscopy, surface imaging, water contact angle determination, and spectroscopic analysis confirmed the successful immobilization of both tryptophan and amoxicillin while maintaining the integrity of the PLLA surface. This tailored modification not only exhibited a novel method for surface functionalization but also opens avenues for developing antimicrobial biomaterials with improved drug-loading capacity.

Funder

Basque Government

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3