Effect of Exposure Conditions on Mortar Subjected to an External Sulfate Attack

Author:

Omikrine Metalssi Othman1ORCID,Quiertant Marc23ORCID,Jabbour Mike1,Baroghel-Bouny Véronique1

Affiliation:

1. University Gustave Eiffel, Cerema, UMR MCD, F-77454 Marne-la-Vallée, France

2. University Gustave Eiffel, EMGCU, F-77454 Marne-la-Vallée, France

3. Institut de Recherche, ESTP, F-94230 Cachan, France

Abstract

This study aims to investigate the influence of exposure conditions on the behavior of mortar subjected to an external sulfate attack (ESA). Three different exposure conditions (full immersion, semi-immersion, and drying/wetting cycles) were tested on mortar prisms made with Portland cement and two w/c ratios (0.45 and 0.6). To monitor degradation, it was necessary to evaluate variations in length (expansion), mass changes, compressive and tensile strengths, changes in the total porosity measured using water accessible porosity tests, and changes in the macroscopic behavior of the samples. Mercury intrusion porosimetry (MIP) was used to determine the size distribution of the pores. It was demonstrated that mixing mortar with the lower w/c ratio of 0.45 results in improved performance against an ESA. This study also demonstrates that the type of exposure to an ESA has no significant effect on the kinetics of sulfate penetration during the exposure period. However, the sample’s surface becomes more cracked when subjected to repeated drying and wetting cycles. For all the considered exposure conditions, expansion occurred in three stages. In stage 1, the reaction product (ettringite) precipitated in large voids, without causing significant expansion (the expansion remained low and stable). During the second stage, the reaction products generated growing internal stress. The final stage of expansion resulted in microcracks, strength losses, and the formation of macropores, which ultimately lead to material failure. The MIP results indicate that major changes in the porosity and pore volume distribution occur at the surface layer in regard to the gel and capillary pore ranges.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3