Encapsulation of InP/ZnS Quantum Dots into MOF-5 Matrices for Solid-State Luminescence: Ship in the Bottle and Bottle around the Ship Methodologies

Author:

Tran Alexis1,Valleix Rodolphe1ORCID,Réveret François1,Frezet Lawrence1ORCID,Cisnetti Federico1ORCID,Boyer Damien1ORCID

Affiliation:

1. Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France

Abstract

The utilization of InP-based quantum dots (QDs) as alternative luminescent nanoparticles to cadmium-based QDs is actively pursued. However, leveraging their luminescence for solid-state applications presents challenges due to the sensitivity of InP QDs to oxidation and aggregation-caused quenching. Hence, an appealing strategy is to protect and disperse InP QDs within hybrid materials. Metal–organic frameworks (MOFs) offer a promising solution as readily available crystalline porous materials. Among these, MOF-5 (composed of {Zn4O}6+ nodes and terephthalate struts) can be synthesized under mild conditions (at room temperature and basic pH), making it compatible with InP QDs. In the present work, luminescent InP/ZnS QDs are successfully incorporated within MOF-5 by two distinct methods. In the bottle around the ship (BAS) approach, the MOF was synthesized around the QDs. Alternatively, in the ship in the bottle (SIB) strategy, the QDs were embedded via capillarity into a specially engineered, more porous variant of MOF-5. Comparative analysis of the BAS and SIB approaches, evaluating factors such as operational simplicity, photoluminescence properties, and the resistance of the final materials to leaching were carried out. This comparative study provides insights into the efficacy of these strategies for the integration of InP/ZnS QDs within MOF-5 for potential solid-state applications in materials chemistry.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3