The Stability Study of Cefepime Hydrochloride in Various Drug Combinations

Author:

Żandarek Joanna12,Binert-Kusztal Żaneta1,Starek Małgorzata1ORCID,Dąbrowska Monika1ORCID

Affiliation:

1. Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland

2. Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland

Abstract

Modern antibiotics face many obstacles, starting with the ever-increasing resistance of microorganisms directed against the antibiotic. An important problem is also the existing trend of polypharmacy. The aim of this study was to develop qualitative and quantitative conditions for the determination of cefepime-hydrochloride solution individually and in mixtures containing other substances with biological activity, such as ketoprofen, gestodene with ethinylestradiol, estradiol, caffeine, calcium ions, paracetamol, bisoprolol, acetylsalicylic acid and ibuprofen, using thin-layer chromatography combined with densitometric analysis. The influence of temperature on the stability of cefepime in these situations was investigated. Furthermore, the effect of UV radiation on the stability of the antibiotic in model drug mixtures was tested. On the basis of the dependence of changes on the concentration of cefepime over time, the order of the reaction was designated, followed by the kinetic parameters of the reactions. Statistical analysis proved that the rate-of-concentration changes in the analyzed conditions corresponded to first-order kinetics. In the course of optimizing the analytical procedure, taking into account the lack of interference of the main peak with the additional peaks and the retardation factor (RF), the mobile phase with the composition of ethanol: 2-propanol: acetone: water (4:4:1:3, v/v/v/v) was selected, while silica gel 60F254 TLC plates were used as the stationary phase. Cefepime-peak areas obtained during the analysis at the analyzed time points allowed us to conclude that the stability of the antibiotic decreased with increasing temperature. The greatest stability was obtained in mixtures with calcium ions (half-life values (t0.5) up to 1320.00 h), while the greatest degradation occurred in combination with hormones (t0.5, 2.00 h at 40 °C). Studies have also demonstrated the destructive UV-radiation impact on the stability of these antibiotic-drug combinations (t0.5, 0.23–0.71 h).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference31 articles.

1. The negative impact of antibiotic resistance;Friedman;Clin. Microbiol. Infect.,2016

2. World Health Organization (2021, December 19). Antibiotic Resistance (who.int). Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.

3. World Health Organization (2021). Model List of Essential Medicines—22nd List, 2021, World Health Organization.

4. Cephalosporin, carbapenem, and monobactam antibiotics;Thompson;Mayo Clin. Proc.,1987

5. European Centre for Disease Prevention and Control (2022, February 01). European Surveillance of Antimicrobial Consumption Network (ESAC-Net). Available online: https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-netWorld-Health-Organization.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3