TRPC6 Inactivation Reduces Albuminuria Induced by Protein Overload in Sprague Dawley Rats

Author:

Kim Eun Young,Dryer Stuart E.

Abstract

Canonical transient receptor potential-6 (TRPC6) channels have been implicated in familial and acquired forms of focal and segmental glomerulosclerosis (FSGS), and in renal fibrosis following ureteral obstruction in mice. TRPC6 channels also appear to play a role in driving glomerular disease in aging and in autoimmune glomerulonephritis. In the present study, we examine the role of TRPC6 in the proteinuric state caused by prolonged albumin overload (AO) in Sprague Dawley rats induced by daily injections of exogenous albumin. This was assessed in rats with a global and constitutive inactivation of TRPC6 channels (Trpc6del/del rats) and in wild-type littermates (Trpc6wt/wt rats). AO for 14 and 28 days caused increased urine albumin excretion that was significantly attenuated in Trpc6del/del rats compared to Trpc6wt/wt controls. AO overload did not induce significant glomerulosclerosis or azotemia in either genotype. AO induced mild tubulointerstitial disease characterized by fibrosis, hypercellularity and increased expression of markers of fibrosis and inflammation. Those changes were equally severe in Trpc6wt/wt and Trpc6del/del rats. Immunoblot analysis of renal cortex indicated that AO increased the abundances of TRPC3 and TRPC6, and caused a nearly complete loss of TRPC5 in Trpc6wt/wt rats. The increase in TRPC3 and the loss of TRPC5 occurred to the same extent in Trpc6del/del rats. These data also suggest that TRPC6 plays a role in the normal function of the glomerular filtration barrier. However, whether TRPC6 inactivation protects the tubulointerstitial compartments in Sprague Dawley rats depends on the disease model examined.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3