Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90

Author:

Wu Hong-Yu,Trevino Jose G.,Fang Bing-Liang,Riner Andrea N.ORCID,Vudatha VigneshORCID,Zhang Guo-Hua,Li Yi-Ping

Abstract

Pancreatic cancer (PC) patients are highly prone to cachexia, a lethal wasting syndrome featuring muscle wasting with an undefined etiology. Recent data indicate that certain murine cancer cells induce muscle wasting by releasing Hsp70 and Hsp90 through extracellular vesicles (EVs) to activate p38β MAPK-mediated catabolic pathways primarily through Toll-like receptor 4 (TLR4). However, whether human PC induces cachexia through releasing Hsp70 and Hsp90 is undetermined. Here, we investigated whether patient-derived PC cells induce muscle cell atrophy directly through this mechanism. We compared cancer cells isolated from patient-derived xenografts (PDX) from three PC patients who had cachexia (PCC) with those of three early-stage lung cancer patients without cachexia (LCC) and two renal cancer patients who were not prone to cachexia (RCC). We observed small increases of Hsp70 and Hsp90 released by LCC and RCC in comparison to non-cancer control cells (NCC). However, PCC released markedly higher levels of Hsp70 and Hsp90 (~ 6-fold on average) than LCC and RCC. In addition, PCC released similarly increased levels of Hsp70/90-containing EVs. In contrast to RCC and LCC, PCC-conditioned media induced a potent catabolic response in C2C12 myotubes including the activation of p38 MAPK and transcription factor C/EBPβ, upregulation of E3 ligases UBR2 and MAFbx, and increase of autophagy marker LC3-II, resulting in the loss of the myosin heavy chain (MHC ~50%) and myotube diameter (~60%). Importantly, the catabolic response was attenuated by Hsp70- and Hsp90-neutralizing antibodies in a dose-dependent manner. These data suggest that human PC cells release high levels of Hsp70 and Hsp90 that induce muscle atrophy through a direct action on muscle cells.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3