Cell-Type-Specific Effects of the Ovarian Cancer G-Protein Coupled Receptor (OGR1) on Inflammation and Fibrosis; Potential Implications for Idiopathic Pulmonary Fibrosis

Author:

Nagel David J.ORCID,Rackow Ashley R.,Ku Wei-Yao,Bell Tyler J.,Sime Patricia J.,Kottmann Robert Matthew

Abstract

Idiopathic pulmonary fibrosis (IPF) is a disease characterized by irreversible lung scarring. The pathophysiology is not fully understood, but the working hypothesis postulates that a combination of epithelial injury and myofibroblast differentiation drives progressive pulmonary fibrosis. We previously demonstrated that a reduction in extracellular pH activates latent TGF-β1, and that TGF-β1 then drives its own activation, creating a feed-forward mechanism that propagates myofibroblast differentiation. Given the important roles of extracellular pH in the progression of pulmonary fibrosis, we sought to identify whether pH mediates other cellular phenotypes independent of TGF-β1. Proton-sensing G-protein coupled receptors are activated by acidic environments, but their role in fibrosis has not been studied. Here, we report that the Ovarian Cancer G-Protein Coupled Receptor1 (OGR1 or GPR68) has dual roles in both promoting and mitigating pulmonary fibrosis. We demonstrate that OGR1 protein expression is significantly reduced in lung tissue from patients with IPF and that TGF-β1 decreases OGR1 expression. In fibroblasts, OGR1 inhibits myofibroblast differentiation and does not contribute to inflammation. However, in epithelial cells, OGR1 promotes epithelial to mesenchymal transition (EMT) and inflammation. We then demonstrate that sub-cellular localization and alternative signaling pathways may be responsible for the differential effect of OGR1 in each cell type. Our results suggest that strategies to selectively target OGR1 expression may represent a novel therapeutic strategy for pulmonary fibrosis.

Funder

National Heart Lung and Blood Institute

NIH LRP

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acidosis-related pain and its receptors as targets for chronic pain;Pharmacology & Therapeutics;2023-07

2. Reviewing the Regulators of COL1A1;International Journal of Molecular Sciences;2023-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3