Carbon Nanofiber—Sodium Alginate Composite Aerogels Loaded with Vitamin D: The Cytotoxic and Apoptotic Effects on Colon Cancer Cells

Author:

Bingol Ozakpinar Ozlem1ORCID,Dastan Havva2ORCID,Gurboga Merve2ORCID,Sayin Fatih Serdar3ORCID,Ozsavci Derya1ORCID,Caliskan Salihi Elif4ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey

2. Department of Biochemistry, Health Sciences Institute, Marmara University, 34865 Istanbul, Turkey

3. Department of Electrical-Electronics Engineering, Faculty of Technology, Marmara University, 34840 Istanbul, Turkey

4. Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey

Abstract

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and the third leading cause of cancer-related deaths worldwide. A substantial body of literature supports the crucial role of vitamin D (VD) in the etiology, progression, prognosis, and treatment of cancer. Recent clinical studies have found an inverse correlation between CRC incidence and serum VD levels. However, the low water solubility of VD and its anticarcinogenic activity at supraphysiological plasma levels, which causes hypercalcemia, required carrier systems. Carbon-based nanomaterials are excellent eco-friendly candidates, with exceptional chemical resistance, efficient mechanical properties, and negligible weight. Furthermore, composite aerogels manufactured from these nanomaterials have gained interest due to their extensive surface areas and porous structures, which make them suitable for delivering drugs. Our research aimed to study the development of composite aerogels loaded with VD by utilizing carbon nanofibers (CNFs) in an aerogel matrix provided to colon cancer cells. For this purpose, Aero1 as a drug delivery system was first prepared and characterized using XRD, FTIR, and SEM methods. Biochemical methods were employed to evaluate the antiproliferative, apoptotic, and anti-migratory effects on colon cancer cells. FTIR and XRD measurements confirmed the production of aerogels. SEM analysis revealed that aerogels have a non-uniform surface. The findings showed that aerogels can effectively deliver VD to the colon cancer cells, while also inhibiting cancer cell proliferation and migration. This research suggests that the Aero1 drug delivery system could be a valuable tool in the fight against colon cancer and other health issues.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3