Affiliation:
1. Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Via Celoria 2, I-20133 Milano, Italy
Abstract
Chlorinated ethene contamination is a worldwide relevant health issue. In anaerobic aquifers, highly chlorinated ethenes are transformed by microbially-mediated organohalide respiration metabolism. For this reason, in the last few years, bioremediation interventions have been developed and employed in situ for aquifer decontamination. Biostimulation has been demonstrated to be efficient in enhancing organohalide respiration activity. The use of agrifood wastes that replace engineered substrates as biostimulants permits the low carbon impact of bioremediation treatment as part of a circular economy approach. The present work depicts the effects of available bio-based substrates and discusses their efficiency and impact on microbial communities when applied to contaminated aquifers. As a drawback of anaerobic organohalide respiration, there is the accumulation of more toxic lower-chlorinated ethenes. However, compounds such as dichloroethene (DCE) and vinyl chloride (VC) can be mineralized by metabolic and co-metabolic pathways in aerobic conditions. For this reason, sequential anaerobic/aerobic treatments proposed to stimulate the natural biotransformation activity can achieve complete degradation of chlorinated ethenes. The aim of this work is to provide an up-to-date revision of anaerobic/aerobic microbial transformation pathways towards chlorinated ethenes and to discuss their application in real scenarios and futurable microbial bioelectrochemical systems to remediate contaminated aquifers.
Funder
INAIL-BRIC 2019
European Union Next-Generation EU
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference155 articles.
1. (2022, September 20). Available online: https://www.fao.org/sustainable-development-goals/en/.
2. Ground Water Making the Invisible Visible;Hasan;Legal Lock J.,2021
3. Climate Change: The utility groundwater role in supply security;Foster;Source,2020
4. Margat, J., and Van der Gun, J. (2013). Groundwater around the World: A Geographic Synopsis, CRC Press.
5. UNESCO (2015). The United Nations World Water Development Report 2015, UNESCO.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献