Deep Machine Learning for Medical Diagnosis, Application to Lung Cancer Detection: A Review

Author:

Gayap Hadrien T.1ORCID,Akhloufi Moulay A.1ORCID

Affiliation:

1. Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A3E9, Canada

Abstract

Deep learning has emerged as a powerful tool for medical image analysis and diagnosis, demonstrating high performance on tasks such as cancer detection. This literature review synthesizes current research on deep learning techniques applied to lung cancer screening and diagnosis. This review summarizes the state-of-the-art in deep learning for lung cancer detection, highlighting key advances, limitations, and future directions. We prioritized studies utilizing major public datasets, such as LIDC, LUNA16, and JSRT, to provide a comprehensive overview of the field. We focus on deep learning architectures, including 2D and 3D convolutional neural networks (CNNs), dual-path networks, Natural Language Processing (NLP) and vision transformers (ViT). Across studies, deep learning models consistently outperformed traditional machine learning techniques in terms of accuracy, sensitivity, and specificity for lung cancer detection in CT scans. This is attributed to the ability of deep learning models to automatically learn discriminative features from medical images and model complex spatial relationships. However, several challenges remain to be addressed before deep learning models can be widely deployed in clinical practice. These include model dependence on training data, generalization across datasets, integration of clinical metadata, and model interpretability. Overall, deep learning demonstrates great potential for lung cancer detection and precision medicine. However, more research is required to rigorously validate models and address risks. This review provides key insights for both computer scientists and clinicians, summarizing progress and future directions for deep learning in medical image analysis.

Funder

New Brunswick Health Research Foundation

New Brunswick Innovation Foundation

New Brunswick Priority Occupation Student Support Fund

Publisher

MDPI AG

Subject

General Medicine

Reference116 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3