Variations in Microstructure and Collapsibility Mechanisms of Malan Loess across the Henan Area of the Middle and Lower Reaches of the Yellow River

Author:

Wei Yi1ORCID,Huang Zhiquan12

Affiliation:

1. College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Luoyang Institute of Science and Technology, Luoyang 471023, China

Abstract

The Henan area of the middle and lower reaches of the Yellow River is situated within the third sedimentary loess area, positioned as the southeasternmost segment within the transitional belt connecting the Loess Plateau with the North China Plain. Addressing concerns related to loess collapse, landslides, and subgrade settlement across various regions attributable to the collapsible nature of Malan loess in western Henan, this study undertook collapsibility testing of undisturbed Malan loess in the province. The different mechanisms of loess collapsibility in different regions were explained from the microstructure by using the indoor immersion-compression test double-line method, scanning electron microscope (SEM), and particles and cracks analysis system (PCAS). The relationship between quantitative factors of microstructure and collapsibility of loess was analyzed by linear regression analysis. The findings indicate that under identical overburden pressure and immersion conditions, the collapsibility of Malan loess in western Henan diminishes progressively from west to east. Microstructural tests were conducted on various loess specimens using scanning electron microscopy, revealing that the distribution of loess particles is notably concentrated in the Xingyang and Gongyi areas, leading to a reduction in pore area compared to the Shanzhou and Mianchi areas. While the Mianchi and Shanzhou areas exhibit a loose arrangement of loess particles, those in Xingyang and Gongyi are comparatively denser. Analysis of microstructural images through the particles and cracks analysis system elucidated that the pore arrangement in the Gongyi and Xingyang areas is more stable than in the Mianchi and Shanzhou areas. Additionally, there is a gradual concentration in particle distribution, accompanied by an increase in agglomeration degree. According to the analysis and comparison of microstructure and quantitative parameters of four groups of loess samples before and after collapsibility, it is revealed that the change mechanism underlying loess collapsibility in various regions of western Henan primarily stems from the external factors influencing the microstructural alterations within the loess. The microstructural determinants contributing to collapsibility changes in different regions encompass three principal aspects: Firstly, modifications in the grain morphology of the Malan loess skeleton in western Henan are notable. Secondly, variations in the internal pore characteristics of loess microstructure are observed. Thirdly, disparities exist in the interconnections between soil particles. The findings of this research hold significant worth for improving construction safety and geological hazard prevention within the Loess region of western Henan.

Funder

Key research and development Project of Henan province

Publisher

MDPI AG

Reference37 articles.

1. Variations in loess and palaeosol properties as indicators of palaeoclimatic gradients across the Loess Plateau of North China;Derbyshire;Quat. Sci. Rev.,1995

2. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China;Ding;Earth Planet. Sci. Lett.,1998

3. Research on the causes of geological disasters caused by “7.20” mountain floods in the western mountainous areas of Zhengzhou;Liu;J. Eng. Geol.,2022

4. The collapse mechanism in partly saturated soil;Barden;Eng. Geol.,1973

5. Review of wetting-induced collapse in compacted soil;Lawton;J. Geotech. Eng.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3