The Maintenance Factor as a Necessary Parameter for Sustainable Artificial Lighting in Engineering Production—A Software Approach

Author:

Dupláková Darina1ORCID,Sloboda Patrik1

Affiliation:

1. Faculty of Manufacturing Technologies with a Seat in Presov, Technical University of Kosice, Bayerova 1, 080 01 Presov, Slovakia

Abstract

The presented article addresses the issue of the maintenance factor, which forms a part of the design variables in artificial lighting within engineering practices from a sustainability perspective. The maintenance factor was monitored using two simulation tools—Dialux, version 5.12.0.5527 and Relux, version 2024.2.8.0. In a production hall, inadequate lighting was identified with a value below 300 lx, prompting a redesign of the lighting system. The overall methodology of the Ergonomic Rationalization Sequence was expanded in the “Design of Lighting System” phase to include the determination of the maintenance factor as a necessary parameter for sustainability, which was subsequently verified in a virtual environment using two options in a practical study. According to the in situ measurements, the virtual environments of the production hall were created for both software, in which four alternatives for the lighting system were developed. The illuminance values met the normative requirements in each alternative; however, the first two (illuminance values 1000 lx–1200 lx) were predicted to have long-term high-energy consumption. In alternatives 3 and 4, the number of luminaires was therefore reduced from 6 pieces to 4, with a total illuminance in the range of 680 lx–780 lx. The determination of the variations in the methods for establishing the maintenance factor identified a deviation of 5%, which, indicating the changes in illuminance values, can be considered as the occurrence of a gross error in lighting design.

Funder

Scientific Grant Agency Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences

Cultural and Educational Grant Agency Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3