Enhanced Remediation of Lead and Cadmium by the Co-System of Phosphate-Solubilizing Bacteria Immobilized on Goethite-Modified Biochar

Author:

Fan Gongduan1ORCID,Zhou Junhou1,Cao Xingfeng1,You Wu23,Lin Chen1,Luo Jing4,Zou Jianyong5,Xu Kai-Qin1,Luo Quanda3

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China

2. School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. Fujian Agricultural Ecological Environment and Energy Technology Extension Station, Fuzhou 350001, China

4. Fujian Jinhuang Environmental Sci-Tech Co., Ltd., Fuzhou 350002, China

5. Anhui Urban Construction Design Institute Co., Ltd., Hefei 230051, China

Abstract

Bioremediation has drawn widespread concern in passivating heavy metals, but the intense toxicity of heavy metals to biological cells limits the application of functional strains. Herein, goethite-modified biochar (GMB) was chosen as the carrier to immobilize phosphate-solubilizing bacteria (PSB) of strain L1 for lead and cadmium remediation. Batch experiments showed that the GMB-L1 possessed excellent adsorption performance with a maximum adsorption of 496.54 and 178.18 mg/g for Pb and Cd, respectively. Moreover, adding GMB-L1 in contaminated soil converted heavy metals (Pb and Cd) into more stable fractions and reduced TCLP-extracted heavy metal concentrations (73.24% of Pb and 57.25% of Cd). The GMB-L1 was proved to accomplish Pb and Cd remediation via the process of chemical precipitation, surface complexation, electrostatic attraction, and biomineralization, which was accompanied by the transformation of heavy metals into a more stable crystal structure, such as Pb5(PO4)3OH and Cd5(PO4)3OH. Therefore, the co-system of GMB and strain L1 could be regarded as a prospective option for efficiently remedying environmental heavy metal pollution.

Funder

Natural Science Foundation of Fujian Province in China

Science and Technology Project of Fuzhou City

Science and Technology Project of Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3