Hygrothermal Properties of Raw Earth Materials: A Literature Review

Author:

Giada GiuffridaORCID,Caponetto RosaORCID,Nocera FrancescoORCID

Abstract

Raw earth historic and contemporary architectures are renowned for their good environmental properties of recyclability and low embodied energy along the production process. Earth massive walls are universally known to be able to regulate indoor thermal and hygroscopic conditions containing energy consumptions, creating comfortable interior spaces with a low carbon footprint. Therefore, earth buildings are de facto green buildings. As a result of this, some earthen technologies have been rediscovered and implemented to be adapted to the contemporary building production sector. Nevertheless, the diffusion of contemporary earthen architecture is decelerated by the lack of broadly accepted standards on its anti-seismic and thermal performance. Indeed, the former issue has been solved using high-tensile materials inside the walls or surface reinforcements on their sides to improve their flexural strength. The latter issue is related to the penalization of earth walls thermal behavior in current regulations, which tent to evaluate only the steady-state performance of building components, neglecting the benefit of heat storage and hygrothermal buffering effect provided by massive and porous envelopes as raw earth ones. In this paper, we show the results of a paper review concerning the hygrothermal performance of earthen materials for contemporary housing: great attention is given to the base materials which are used (inorganic soils, natural fibers, and mineral or recycled aggregates, chemical stabilizers), manufacturing procedures (when described), performed tests and final performances. Different earth techniques (adobe, cob, extruded bricks, rammed earth, compressed earth blocks, light earth) have been considered in order to highlight that earth material can act both as a conductive and insulating meterial depending on how it is implemented, adapting to several climate contests. The paper aims to summarize current progress in the improvement of thermal performance of raw earth traditional mixes, discuss the suitability of existing measurement protocols for hygroscopic and natural materials and provide guidance for further researches.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference54 articles.

1. 2018 Global Status Report towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector, Global Alliance for Buildings and Construction (GlobalABC),2018

2. CRATerre: Traité de Construction en Terre;Houben,2006

3. Building with Earth: Design and Technology of a Sustainable Architecture;Minke,2006

4. A Review of Rammed Earth Construction;Maniatidis,2003

5. Refined Earth Construction Design with Rammed Earth;Rauch,2015

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3