Studies of a Rotary–Centrifugal Grain Grinder Using a Multifactorial Experimental Design Method

Author:

Marczuk ,Blicharz-Kania ,Savinykh ,Isupov ,Palichyn ,Ivanov

Abstract

A scientific and technical literature review on machines designed to grind fodder grain revealed that the existing designs of grinding machines—those based on destruction by impact, cutting, or chipping—have various drawbacks. Some disadvantages include high metal and energy intensity, an uneven particle size distribution of the ground (crushed) product, a high percentage of dust fraction, the rapid wear of work tools (units), and heating of the product. To eliminate most of the identified shortcomings, the design of a rotary–centrifugal grain grinder is proposed in this paper. The optimization of the grinder’s working process was carried out using experimental design methodology. The following factors were studied: the grain material feed, rotor speed (rpm), opening of the separating surface, number of knives (blades) on the inner and outer rings, technical conditions of the knives (sharpened or unsharpened), and the presence of a special insert that is installed in the radial grooves of the distribution bowl. The optimization criteria were based on the amount of electricity consumed by and the performance of the rotary–centrifugal grain grinder. The quality of performance was quantified by the finished product, based on the percentage of particles larger than 3 mm in size. An analysis of the results of the multifactorial experiment allowed us to establish a relationship (interaction) between the factors and their influence on the optimization criteria, as well as to determine the most significant factors and to define further directions for the research of a centrifugal–rotary grain grinder. From our experimental results, we found that the grinder is underutilized in the selected range of factor variation. Furthermore, the number of knives installed at the second stage of the grinder, the gap (clearance) of the separating surface, and the technical condition of the knives are among the most important factors influencing the power consumption and the quality of the resulting product. A reduction in the number of knives at the first stage has a positive effect on all the selected optimization criteria; and by varying the factors in the selected range, it is possible to obtain a product corresponding to medium and coarse grinding.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3