Configuration of the Power Reflux Hydro-Mechanical Transmission System

Author:

Wang Jiezhong12,Sun Dongye12,Wang Jianhua34,Liao Guangliang12

Affiliation:

1. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China

2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

3. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China

4. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471003, China

Abstract

The hydro-mechanical transmission system (HMTS) operates either in power split transmission mode (PSTM) or power reflux transmission mode (PRTM). Although PRTM is often ignored as a transition mode, this study reveals that the HMTS operating in the PRTM can accumulate the power input from the power source in the form of reflux power (in some references, scholars also refer to the reflux power as circulating power), thereby enabling the HMTS to exhibit a similar transmission performance as hydrodynamic transmission systems. Accordingly, this study applies the PRTM to the starting of construction vehicles and refers to the HMTS operating only in the PRTM as the power reflux hydro-mechanical transmission system (PHTS). By analyzing the internal relationship between the configuration and the power flow, transmission characteristics, energy storage mechanism, and energy loss mechanism of the PHTS, the optimal PHTS configuration suitable for construction vehicles was explored. The results indicate that reasonable configurations can enable the PHTS to significantly improve the efficiency of the construction vehicle transmission system, reducing energy consumption while ensuring power performance. Expanding the displacement ratio control range of the hydraulic speed regulation mechanism and combining the PRTM with the PSTM in an orderly manner can widen the high-efficiency range of the vehicle transmission system without increasing the number of vehicle gears.

Funder

High Level Innovation and Entrepreneurial Research Team Program in Jiangsu

Fundamental Research Funds for the Central Universities

Research on Key Tool Chain for Advanced Powertrain Design and Efficient Integration Control of New Energy Vehicles

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3