Abstract
Ammonia (NH3) is regarded as a promising medium of hydrogen storage, due to its large hydrogen storage density, decent performance on safety and moderate storage conditions. On the user side, NH3 is generally required to decompose into hydrogen for utilization in fuel cells, and therefore it is vital for the NH3-based hydrogen storage technology development to study NH3 decomposition processes and improve the decomposition efficiency. Numerical simulation has become a powerful tool for analyzing the NH3 decomposition processes since it can provide a revealing insight into the heat and mass transfer phenomena and substantial guidance on further improving the decomposition efficiency. This paper reviews the numerical simulations of NH3 decomposition in various application scenarios, including NH3 decomposition in microreactors, coupled combustion chemical reactors, solid oxide fuel cells, and membrane reactors. The models of NH3 decomposition reactions in various scenarios and the heat and mass transport in the reactor are elaborated. The effects of reactor structure and operating conditions on the performance of NH3 decomposition reactor are analyzed. It can be found that NH3 decomposition in microchannel reactors is not limited by heat and mass transfer, and NH3 conversion can be improved by using membrane reactors under the same conditions. Finally, research prospects and opportunities are proposed in terms of model development and reactor performance improvement for NH3 decomposition.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Key R&D Program of Hubei Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献