Aboveground Forest Biomass Generally Increases with Elevation Gradients in China’s Qinling–Daba Mountains

Author:

Hu Yichen1,Zhou Wenzuo1,Zhang Baiping2,Li Dan1,Yao Xinyu1

Affiliation:

1. Chongqing Engineering Research Center for Remote Sensing Big Data Application, Chongqing Jinfo Mountain National Field Scientific Observation and Research Station for Karst Ecosystem, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. State Key Lab for Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

The complexity of forest ecosystems leads to differences in the distribution patterns of different vegetation types along elevation gradients. This study aimed to explore the characteristics of AGB variations along elevation gradients for different forest types and tree species components in the Qinling–Daba Mountains. Based on 329 field vegetation survey plots, including four sampling transects and four representative mountains, individual tree AGB was calculated using allometric biomass equations. Further, generalized additive models (GAMs) were used to investigate the relationships between AGB and elevation for four forest types (broadleaf forests, coniferous forests, mixed coniferousbroadleaf forests, and shrublands) and three AGB components (total AGB (tAGB), broadleaf species AGB (bAGB), and coniferous species AGB (cAGB)) across eight vegetation survey regions. The results showed that the AGB of different forest types is significantly related to elevation (p < 0.05), with broadleaf forest AGB showing a unimodal pattern with elevation, coniferous forest and mixed forest AGB increasing with elevation, and shrubland AGB exhibiting a noticeable rise at higher elevations. The AGB components across different vegetation survey regions also showed significant relationships with elevation (p < 0.05), with broadleaf species AGB displaying a monotonically increasing trend in regions with a small elevation range and exhibiting a unimodal or bimodal distribution in regions with a large elevation range, while coniferous species AGB generally increased with elevation. Although elevation significantly influenced forest AGB, the variation in R2 values indicated that elevation is not the sole determinant of AGB variation. This study improves the understanding of spatial patterns of forest biomass along elevation gradients.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3