Lecithin and Chitosan as Building Blocks in Anti-Candida Clotrimazole Nanoparticles

Author:

Hemmingsen Lisa Myrseth1ORCID,Panzacchi Virginia12,Kangu Lloyd Mbugua1,Giordani Barbara2ORCID,Luppi Barbara2,Škalko-Basnet Nataša1ORCID

Affiliation:

1. Department of Pharmacy, University of Tromsø—The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway

2. Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy

Abstract

The main focus when considering treatment of non-healing and infected wounds is tied to the microbial, particularly bacterial, burden within the wound bed. However, as fungal contributions in these microbial communities become more recognized, the focus needs to be broadened, and the remaining participants in the complex wound microbiome need to be addressed in the development of new treatment strategies. In this study, lecithin/chitosan nanoparticles loaded with clotrimazole were tailored to eradicate one of the most abundant fungi in the wound environment, namely C. albicans. Moreover, this investigation was extended to the building blocks and their organization within the delivery system. In the evaluation of the novel nanoparticles, their compatibility with keratinocytes was confirmed. Furthermore, these biocompatible, biodegradable, and non-toxic carriers comprising clotrimazole (~189 nm, 24 mV) were evaluated for their antifungal activity through both disk diffusion and microdilution methods. It was found that the activity of clotrimazole was fully preserved upon its incorporation into this smart delivery system. These results indicate both that the novel carriers for clotrimazole could serve as a therapeutic alternative in the treatment of fungi-infected wounds and that the building blocks and their organization affect the performance of nanoparticles.

Funder

UiT The Arctic University of Norway

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3