Direct Growth of Low Thermal Conductivity WTe2 Nanocrystalline Films on W Films

Author:

Yu Zhisong1,Tao Rong1,Guo Jin1,Feng Shiyi1,Wang Yue1

Affiliation:

1. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China

Abstract

WTe2 has attracted much attention because of its layered structure and special electronic energy band structure. However, due to the difficulty of evaporating the W element itself and the inactivity of the Te element, the obtained large-area WTe2 thin films are usually accompanied by many defects. In this paper, WTe2 nanocrystalline films were successfully prepared on quartz substrates using magnetron sputtering and chemical vapor deposition techniques. Various analytical techniques such as X-ray Diffraction, Raman spectra, X-ray Photoelectron Spectroscopy, Scanning Electron Microscope, and photoluminescence spectra are employed to analyze the crystal structure, composition, and morphology. The effects of different tellurization temperatures and tellurization times on the properties of WTe2 thin films were investigated. WTe2 nanocrystalline films with good crystallinity were obtained at 600 °C for 30 min. The thermal conductivity of the WTe2 films prepared under this condition was 1.173 Wm−1K−1 at 300 K, which is significantly higher than that of samples prepared using other methods.

Funder

Inner Mongolia Science Foundation, China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3