Sound Absorption of Sustainable Polymer Nanofibrous Thin Membranes Bonded to a Bulk Porous Material

Author:

Ulrich Tomáš,Arenas Jorge P.ORCID

Abstract

In this paper, the standardized characterization of nanofibrous membranes used to coat three porous bulk acoustical materials (melamine foam, a polyester textile, and an MDF perforated panel) is presented. The membranes were manufactured from recyclable Polyamide 6 (PA6) and water-soluble polyvinyl alcohol (PVA) using the needleless electrospinning technique. This resulted in very thin membranes that had high porosity and very high airflow resistivity. The membranes were collected in a high-permeability nonwoven substrate. Measured results in both an impedance tube and a reverberation room showed significant improvements in the sound absorption performance of the bulk materials after incorporating the nanofibrous layer. The application of the membranes on the surface of a traditional air-backed perforated panel also improved the sound absorption, exhibiting a broad peak of sound absorption in the low-frequency range. This was particularly true when the membrane area weight was increased. It is concluded that these materials, manufactured as described in this paper, can be alternatives to glass, mineral, and ceramic fibrous materials, which have high carbon footprints.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3