Literary Identification of Differentially Hydroxymethylated DNA Regions for Type 2 Diabetes Mellitus: A Scoping Minireview

Author:

Luong Ryan Anh Minh1,Guan Weihua2,Vue Fue Chee1,Dai Jun3ORCID

Affiliation:

1. Doctoral Program of Osteopathic Medicine, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA

2. Division of Biostatistics & Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN 55414, USA

3. Department of Public Health, College of Health Sciences, Des Moines University, West Des Moines, IA 50266, USA

Abstract

Type 2 diabetes mellitus (T2DM) is a public health condition where environmental and genetic factors can intersect through hydroxymethylation. It was unclear which blood DNA regions were hydroxymethylated in human T2DM development. We aimed to identify the regions from the literature as designed in the ongoing Twins Discordant for Incident T2DM Study. A scoping review was performed using Medical Subject Headings (MeSH) and keyword methods to search PubMed for studies published in English and before 1 August 2022, following our registered protocol. The keyword and MeSH methods identified 12 and 3 records separately, and the keyword-identified records included all from the MeSH. Only three case-control studies met the criteria for the full-text review, including one MeSH-identified record. Increased global levels of 5-hydroxymethylated cytosine (5hmC) in T2DM patients versus healthy controls in blood or peripheral blood mononuclear cells were consistently reported (p < 0.05 for all). Among candidate DNA regions related to the human SOCS3, SREBF1, and TXNIP genes, only the SOCS3 gene yielded higher 5hmC levels in T2DM patients with high poly-ADP-ribosylation than participants combined from those with low PARylation and healthy controls (p < 0.05). Hydroxymethylation in the SOCS3-related region of blood DNA is promising to investigate for its mediation in the influences of environment on incident T2DM.

Funder

National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3