The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System

Author:

Chicherin Stanislav12ORCID,Zhuikov Andrey3ORCID,Kuznetsov Petr34

Affiliation:

1. Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

2. Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium

3. Educational and Scientific Laboratory, Siberian Federal University, Svobodny Ave., 79., Krasnoyarsk 660041, Russia

4. Institute of Chemistry and Chemical Technology, Siberian Branch of RAS, 50/24, Akademgorodok, Krasnoyarsk 660036, Russia

Abstract

Large city-scale coal-fired combined heat and power (CHP) plants are one of the main contributors to greenhouse gas emissions. The motivation is to find a way to decrease the contributions in the most feasible way possible. The importance of this study is that it presents a methodology for comparing scenarios from both environmental and economic points of view. The scenarios aim to enhance the environmental performance of combustion flue gas-treatment units. The scenarios include installing an advanced electrostatic precipitator (ESP), a hybrid system comprising ESP and a bag filter, a combined cyclone and baghouse filter, a hybrid baghouse filter with novel electrostatic tissue, a wet flue gas desulfurization (WFGD) scrubber, a WFGD with (NH4)2SO4 technology, and fuel conversion (incl. biomass). Each of the scenarios is evaluated according to (a) primary energy consumption, (b) capital (CapEx) and operational (OpEx) costs, and (c) the obtained environmental effect (decreasing emissions of particulate matter (PM), CO2, SO2, and NOx). Adopting biomass waste decreases CO2 emissions by 50%. PM from the coal-fired boiler with particle filtration is lower compared to biomass but is two times higher than that from natural gas. Using advanced filters for a CHP plant decreases total emissions and PM by 2100–2800%. The largest effect on air quality is achieved by filtration and WFGD, with emissions decreasing by 43%. Primary energy consumption is maximal in fuel conversion and ESP scenarios. The conversion to limestone-based WFGD or the installation of a hybrid filter separately are the most viable options, totaling EUR 14.2 billion of CapEx. However, combining several technologies is essential to increase the quality of flue gas treatment.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3