Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells

Author:

Morelli Giulio,Pescara Teresa,Greco Alessia,Montanucci Pia,Basta Giuseppe,Rossi FedericoORCID,Calafiore Riccardo,Gambelli Alberto MariaORCID

Abstract

The biofabrication of three-dimensional scaffolds using 3D printers and cell-containing bioinks is very promising. A wide range of materials and bioink compositions are being created and tested for cell viability and printability in order to satisfy the requirements of a bioink. This methodology has not still achieved technological maturity, and the actual costs mean that they are often inaccessible for researchers, consequently lowering the development and extending the required times. This research aims to apply this methodology on a laboratory scale by re-adapting a commercial 3D printer, consequently lowering the costs and energy impacts, and, at the same time, ensuring a level of accuracy extremely close to the currently adopted devices and, more in general, suitable for the scopes of the research. To accomplish this, we assembled a biomimetic scaffold made of human Umbilical Cord Matrix Stem Cells (hUCMS), cellulose, and alginate. Various molds were used to produce 3D scaffolds of different sizes. After bioprinting, cell viability was analyzed using ethidium bromide and fluorescein diacetate, and a histological stain was used to evaluate cell and bioink morphology. All of the examined bioinks had a uniform final 3D structure and were stable, easily printable, and procedure-adapted. Up until 21 days of culture, the bioinks remained unaltered and were simple to manipulate. After 7 and 21 days of cell culture, the hUCMS in the cellulose/alginate-based bioinks exhibited cell viabilities of 95% and 85%, respectively. The cells did not present with a fibroblast-like shape but appeared to be round-shaped and homogeneously distributed in the 3D structure. Biomimetic bioink, which is based on cellulose and alginate, is an appropriate hydrogel for 3D bioprinting. This preliminary work illustrated the potential use of these two biomaterials for the 3D bioprinting of mesenchymal stem cells.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3