Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass

Author:

Stachowicz Paweł,Stolarski Mariusz JerzyORCID

Abstract

Biomass is currently the main renewable energy source (RES) in the EU, particularly in Poland. Solid biomass for energy purposes is primarily sourced from forests, the wood processing industry, and agriculture. A significant source of this energy feedstock could also be short-rotation woody crops (SRWCs), including black locust, poplar, and willow. Since numerous factors determine the SRWC biomass quality, the current study aimed at assessing biomass thermophysical properties and elemental composition depending on the plant species, soil enrichment procedure, and the plant harvest rotation over a consecutive 12-year period of cultivation. The characteristics under study, including the moisture content, ash content, volatile matter, fixed carbon, higher heating value (HHV), and the carbon, hydrogen, nitrogen, sulfur, and chlorine contents, were significantly differentiated by all the main factors, i.e., the SRWC species, the soil enrichment procedure, the harvest rotation, and the interactions between these factors. The SRWC species accounted for the highest percentage of the variation in the biomass moisture content, ash content, HHV, and nitrogen content, while the harvest rotation made the largest contribution to the variation in carbon, hydrogen, and chlorine contents. The black locust biomass was characterized by the significantly lowest moisture content (an average of 38.89%) and the highest sulfur content (an average of 0.033% DM), nitrogen content (an average of 0.91% DM), and chlorine content (an average of 0.032% DM). However, poplar was characterized by the highest HHV (an average of 19.84 GJ Mg−1 DM) and the highest moisture content (56.52% DM), carbon content (56.52% DM), and ash content (an average of 1.67% DM). Willow was characterized by the lowest ash content (an average of 1.67% DM), a medium moisture content, and the lowest nitrogen content (an average of 0.38% DM) and chlorine content (an average of 0.19% DM).

Funder

University of Warmia and Mazury in Olsztyn

Minister of Education and Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. (2022, October 30). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, Strasbourg 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF.

2. Statistics Poland (2022). Energy 2022. Enterprises Department, Energy and Raw Materials Balances Section.

3. Energy revolution: From a fossil energy era to a new energy era;Caineng;Nat. Gas. Ind. B,2016

4. A critical review of comparative global historical energy consumption and future demand: The story told so far;Ahmad;Energy Rep.,2020

5. The effect of harvest strategy on the energy potential of Jerusalem artichoke;Bogucka;Ind. Crops Prod.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3