Active Monitoring of Fatigue Crack in the Weld Zone of Bogie Frames Using Ultrasonic Guided Waves

Author:

Yan ,Jin ,Sun ,Qing

Abstract

The bogie frame is an important structure of railway vehicles, transmitting the traction, braking force, lateral force, and vertical force during the traction operation. With the development of high speeds and heavy loads, the appearance of fatigue cracks in the bogie frames is increasing, which reduces the driving life of railway vehicles and even causes serious traffic accidents. Real-time monitoring on the integrity of the bogie is an inevitable requirement for ensuring the safe operation of railway vehicles. In this paper, ultrasonic guided wave-based active structural health monitoring (SHM) was developed to identify the fatigue crack of the bogie frame. Experiments were conducted on a welded T-shape specimen with a thickness of 12 mm. A total of 10 piezoelectric lead zirconate titanate (PZT) disks were mounted around the weld zone of the specimen, five of which were used as actuators, and the other five were used as sensors. Five-peak modulation narrow-band sine waves were input into the actuators to excite the specimen. From the sensor signals, the advanced damage index (DI) was calculated to identify the propagation of the crack. The experimental results demonstrate that crack damage as small as 2 mm in the weld zone of the bogie frame can be successfully detected. Some practical issues for implementing the SHM in real applications, such as crack quantification and environmental compensation, were also discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3