Assessment of Sea Level and Morphological Changes along the Eastern Coast of Bangladesh

Author:

Anwar Md. Shibly,Rahman Kalimur,Bhuiyan Md Abul EhsanORCID,Saha Rupayan

Abstract

Bangladesh is one of the climate risk-prone countries in South Asia facing tremendous challenges to combat sea-level rise and its associated coastal morphological changes. This study aimed to determine the interaction of the sea-level rise and morphological changes, particularly at Cox’s Bazar and Kutubdia Island along the eastern coast of Bangladesh. Available hourly tide gauge data, daily temperature, daily rainfall data, and 15 LANDSAT satellite images for the period of 1983–2016 were analyzed to examine the sea level shore morphological change and associated climate change phenomenon. First, we identified the historical nonlinear sea-level trend using Hilbert-Huang Transformation (HHT) based on the complete ensemble empirical mode decomposition (CEEMD) technique. We divided the study period into three distinct sea-level change periods of 1983–1993, 1993–2003, and 2003–2014 based on nonlinear sea-level trend analysis. The study revealed that the sea level on the east coast of Bangladesh had a moderate rising trend during 1983–1993, slight decrease during 1993–2003, and steep rising trend during 2003–2014. We also observed that a sea-level change within a particular period impacted the shore morphological change after approximately two years, such that the average sea-level change during the period of 1993–2003 might have affected the shore morphology for 1996–2005. Alarming shore erosion was found for the period of 2005–2016 compared to the previous periods of 1989–1996 and 1996–2005 for both Cox’s Bazar and Kutubdia Island. The shore morphology of some segments was also substantially affected due to the geometric shape of the land, significant waves, and shore protection works. This study encourages policymakers to minimize the threats of sea-level rise and ensure sustainable coastal management strategies are introduced to sustain the vital eastern coast of Bangladesh.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3