Lowering pO2 Interacts with Photoperiod to Alter Physiological Performance of the Coastal Diatom Thalassiosira pseudonana

Author:

Chen Bokun,Liu Jihua,Xu Ge,Li GangORCID

Abstract

Exacerbating deoxygenation is extensively affecting marine organisms, with no exception for phytoplankton. To probe these effects, we comparably explored the growth, cell compositions, photosynthesis, and transcriptome of a diatom Thalassiosira pseudonana under a matrix of pO2 levels and Light:Dark cycles at an optimal growth light. The growth rate (μ) of T. pseudonana under a 8:16 L:D cycle was enhanced by 34% by low pO2 but reduced by 22% by hypoxia. Under a 16:8 L:D cycle, however, the μ decreased with decreasing pO2 level. The cellular Chl a content decreased with decreasing pO2 under a 8:16 L:D cycle, whereas the protein content decreased under a 16:8 L:D cycle. The prolonged photoperiod reduced the Chl a but enhanced the protein contents. The lowered pO2 reduced the maximal PSII photochemical quantum yield (FV/FM), photosynthetic oxygen evolution rate (Pn), and respiration rate (Rd) under the 8:16 or 16:8 L:D cycles. Cellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were higher under low pO2 than ambient pO2 or hypoxia. Moreover, the prolonged photoperiod reduced the FV/FM and Pn among all three pO2 levels but enhanced the Rd, MDA, and SOD activity. Transcriptome data showed that most of 26 differentially expressed genes (DEGs) that mainly relate to photosynthesis, respiration, and metabolism were down-regulated by hypoxia, with varying expression degrees between the 8:16 and 16:8 L:D cycles. In addition, our results demonstrated that the positive or negative effect of lowering pO2 upon the growth of diatoms depends on the pO2 level and is mediated by the photoperiod.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3